The Geometric Programming Dual to the Extinction Probability Problem in Simple Branching Processes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Extinction Probability for Bisexual Branching Processes in Varying Environments

In this paper, the bisexual branching process in varying environments introduced in [9] is considered and some sufficient conditions for the existence of positive probability of non-extinction are established.

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Geometric Programming Problem with Trapezoidal Fuzzy Variables

Nowadays Geometric Programming (GP) problem is a very popular problem in many fields. Each type of Fuzzy Geometric Programming (FGP) problem has its own solution. Sometimes we need to use the ranking function to change some part of GP to the linear one. In this paper, first, we propose a method to solve multi-objective geometric programming problem with trapezoidal fuzzy variables; then we use ...

متن کامل

Extinction times in Multitype Markov Branching Processes

In this paper, a distributional approximation to the time to extinction in a subcritical continuous-time Markov branching process is derived. A limit theorem for this distribution is established and the error in the approximation is quantified. The accuracy of the approximation is illustrated in an epidemiological example. Since Markov branching processes serve as approximations to nonlinear ep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1981

ISSN: 0091-1798

DOI: 10.1214/aop/1176994422